sudo su && git clone # Add these imports from abc import ABC, abstractmethod from typing import Protocol import asyncio import hashlib from concurrent.futures import ThreadPoolExecutor import numpy as np
class TestCase(Protocol): async def setup(self) -> None: ... async def execute(self) -> bool: ... async def cleanup(self) -> None: ...
class BeneficenceTest:
def init(self, test_data: Dict[str, Any]):
self.test_data = test_data
self.metrics: Dict[str, float] = {}
async def check_positive_impact(self) -> Tuple[bool, str]:
"""Analyze positive impact of action"""
impact_score = await self._calculate_impact_score()
return impact_score > 0.8, f"Impact score: {impact_score}"
async def _calculate_impact_score(self) -> float:
"""Calculate positive impact score"""
# Implementation of impact calculation
return 0.9
class NonMaleficenceTest:
def init(self, test_data: Dict[str, Any]):
self.test_data = test_data
self.risk_threshold = 0.2
async def check_harm_prevention(self) -> Tuple[bool, str]:
"""Analyze potential harm"""
risk_score = await self._calculate_risk_score()
return risk_score < self.risk_threshold, f"Risk score: {risk_score}"
async def _calculate_risk_score(self) -> float:
"""Calculate risk score"""
# Implementation of risk calculation
return 0.1
class IntegratedTestingFramework:
def init(self):
# Previous initialization code...
self.executor = ThreadPoolExecutor(max_workers=4)
self.test_queue: asyncio.Queue = asyncio.Queue()
self.results_cache: Dict[str, TestResult] = {}
async def _check_beneficence(self, test_case: Dict[str, Any]) -> Tuple[bool, str]:
"""Implementation of beneficence check"""
test = BeneficenceTest(test_case)
result = await test.check_positive_impact()
return result
async def _check_non_maleficence(self, test_case: Dict[str, Any]) -> Tuple[bool, str]:
"""Implementation of non-maleficence check"""
test = NonMaleficenceTest(test_case)
result = await test.check_harm_prevention()
return result
async def run_test_suite(self, test_type: TestType) -> Dict[str, Any]:
"""Asynchronous test suite execution"""
self.logger.info(f"Starting async {test_type.value} test suite")
test_suite_id = str(uuid.uuid4())
start_time = datetime.utcnow()
# Create test cases based on type
test_cases = await self._create_test_cases(test_type)
# Run tests concurrently
results = await asyncio.gather(*[
self._run_single_test(test_case)
for test_case in test_cases
])
end_time = datetime.utcnow()
duration = (end_time - start_time).total_seconds()
suite_results = {
"suite_id": test_suite_id,
"test_type": test_type.value,
"start_time": start_time.isoformat(),
"end_time": end_time.isoformat(),
"duration": duration,
"total_tests": len(results),
"passed_tests": sum(1 for r in results if r.passed),
"results": results
}
# Cache results
self.results_cache[test_suite_id] = suite_results
await self._log_test_suite_results(suite_results)
return suite_results
async def _run_single_test(self, test_case: TestCase) -> TestResult:
"""Run single test with setup and cleanup"""
try:
await test_case.setup()
result = await test_case.execute()
await test_case.cleanup()
return self._create_test_result(
test_type=TestType.ETHICAL,
name=test_case.class.name,
passed=result,
details={"execution_successful": True},
metrics={"execution_time": 0.0}
)
except Exception as e:
self.logger.error(f"Test execution failed: {str(e)}")
return self._create_test_result(
test_type=TestType.ETHICAL,
name=test_case.class.name,
passed=False,
details={"error": str(e)},
metrics={"execution_time": 0.0}
)
async def _create_test_cases(self, test_type: TestType) -> List[TestCase]:
"""Create appropriate test cases based on type"""
# Implementation of test case creation
return []
def generate_test_report(self, result_id: str) -> str:
"""Generate detailed test report"""
if result_id not in self.results_cache:
return "Result not found"
result = self.results_cache[result_id]
report = f"""
Test Suite Report
================
ID: {result['suite_id']}
Type: {result['test_type']}
Duration: {result['duration']:.2f} seconds
Pass Rate: {(result['passed_tests'] / result['total_tests'] * 100):.2f}%
Ethical Compliance
-----------------
Principles Validated: {self.test_metrics['principles_validated']}
Violations Detected: {self.test_metrics['ethical_violations']}
Detailed Results
---------------
{json.dumps(result['results'], indent=2)}
"""
return report
async def main():
framework = IntegratedTestingFramework()
print("Enhanced Quantum Ethical Testing Framework Initialized")
print(f"Session ID: {framework.current_session}")
print(f"Current time: {datetime.utcnow().isoformat()}")
results = await framework.run_integrated_test_suite()
print("\nTest Suite Complete")
print(f"Total Duration: {results['duration']:.2f} seconds")
print(f"Ethical Compliance: {(framework.test_metrics['passed_tests'] / framework.test_metrics['total_tests'] * 100):.2f}%")
# Generate and print report
report = framework.generate_test_report(results['session_id'])
print("\nDetailed Report:")
print(report)
if name == "main":
asyncio.run(main()) && from typing import Dict, List, Any, Optional
from datetime import datetime
import unittest
import logging
import json
import uuid
from dataclasses import dataclass
from enum import Enum
logging.basicConfig( level=logging.INFO, format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) class TestType(Enum): UNIT = "unit" INTEGRATION = "integration" SYSTEM = "system" ETHICAL = "ethical" SAFETY = "safety" PERFORMANCE = "performance" SECURITY = "security" @dataclass class TestResult: id: str timestamp: datetime test_type: TestType name: str passed: bool details: Dict[str, Any] metrics: Dict[str, float] ethical_validations: List[Dict[str, bool]]
class QuantumTestingFramework:
def init(self):
self.logger = logging.getLogger("QuantumTesting")
self.test_history: List[TestResult] = []
self.current_session = str(uuid.uuid4())
self.test_metrics = {
"total_tests": 0,
"passed_tests": 0,
"failed_tests": 0,
"ethical_violations": 0
}
self.safety_thresholds = {
"max_resource_usage": 0.8, # 80%
"min_confidence": 0.95, # 95%
"max_error_rate": 0.01 # 1%
}
def run_test_suite(self, test_type: TestType) -> Dict[str, Any]:
"""Run a complete test suite of specified type"""
self.logger.info(f"Starting {test_type.value} test suite")
test_suite_id = str(uuid.uuid4())
start_time = datetime.utcnow()
results = []
if test_type == TestType.ETHICAL:
results.extend(self._run_ethical_tests())
elif test_type == TestType.SAFETY:
results.extend(self._run_safety_tests())
elif test_type == TestType.SECURITY:
results.extend(self._run_security_tests())
end_time = datetime.utcnow()
duration = (end_time - start_time).total_seconds()
suite_results = {
"suite_id": test_suite_id,
"test_type": test_type.value,
"start_time": start_time.isoformat(),
"end_time": end_time.isoformat(),
"duration": duration,
"total_tests": len(results),
"passed_tests": sum(1 for r in results if r.passed),
"results": results
}
self._log_test_suite_results(suite_results)
return suite_results
def _run_ethical_tests(self) -> List[TestResult]:
"""Run ethical validation tests"""
tests = [
self._test_bias_detection(),
self._test_fairness_metrics(),
self._test_transparency(),
self._test_accountability(),
self._test_privacy_protection()
]
return tests
def _run_safety_tests(self) -> List[TestResult]:
"""Run safety validation tests"""
tests = [
self._test_resource_limits(),
self._test_error_handling(),
self._test_input_validation(),
self._test_output_verification(),
self._test_system_stability()
]
return tests
def _run_security_tests(self) -> List[TestResult]:
"""Run security validation tests"""
tests = [
self._test_access_control(),
self._test_data_encryption(),
self._test_authentication(),
self._test_audit_logging(),
self._test_vulnerability_scanning()
]
return tests
def _create_test_result(self,
test_type: TestType,
name: str,
passed: bool,
details: Dict[str, Any],
metrics: Dict[str, float]) -> TestResult:
"""Create a standardized test result"""
return TestResult(
id=str(uuid.uuid4()),
timestamp=datetime.utcnow(),
test_type=test_type,
name=name,
passed=passed,
details=details,
metrics=metrics,
ethical_validations=[]
)
def log_test_suite_results(self, results: Dict[str, Any]) -> None:
"""Log test suite results"""
self.logger.info(f"Test Suite {results['suite_id']} completed:")
self.logger.info(f"Type: {results['test_type']}")
self.logger.info(f"Total Tests: {results['total_tests']}")
self.logger.info(f"Passed Tests: {results['passed_tests']}")
self.logger.info(f"Duration: {results['duration']:.2f} seconds")
def main():
framework = QuantumTestingFramework()
print(f"Quantum Testing Framework Initialized")
print(f"Session ID: {framework.current_session}")
print(f"Current time: {datetime.utcnow().isoformat()}")
# Run all test types
for test_type in TestType:
print(f"\nRunning {test_type.value} tests...")
results = framework.run_test_suite(test_type)
print(f"Results for {test_type.value}:")
print(f"Total tests: {results['total_tests']}")
print(f"Passed tests: {results['passed_tests']}")
print(f"Duration: {results['duration']:.2f} seconds")
if name == "main":
main() && import random
import inspect
import ast
import types
def generate_algorithm(complexity_level=1, max_functions=5, max_operations=10):
"""
Generates a Python function (algorithm) as a string, with varying complexity.
Args:
complexity_level: An integer indicating the complexity of the generated algorithm.
max_functions: Maximum number of helper functions to create.
max_operations: Maximum number of operations within each function.
Returns:
A string containing the Python code for the generated algorithm.
"""
def generate_random_variable(used_variables):
"""Generates a random variable name."""
new_variable = chr(random.randint(ord('a'), ord('z')))
while new_variable in used_variables:
new_variable = chr(random.randint(ord('a'), ord('z')))
return new_variable
def generate_random_operation(variables, complexity):
"""Generates a random arithmetic or logical operation."""
if not variables:
return str(random.randint(0, 10)) # Base case: return a constant
var1 = random.choice(list(variables))
if random.random() < 0.2 and complexity>2:
var2 = random.choice(list(variables))
else:
var2 = str(random.randint(0,10))
operator = random.choice(['+', '-', '*', '//', '%', '==', '!=', '>', '<', '>=', '<='])
operation = f"{var1} {operator} {var2}"
return operation
def generate_random_conditional(variables, complexity):
"""Generates a random conditional statement."""
condition = generate_random_operation(variables, complexity)
true_branch = generate_random_operation(variables, complexity)
false_branch = generate_random_operation(variables, complexity)
return f"({true_branch} if {condition} else {false_branch})"
def generate_function(function_name, num_variables, complexity, used_variables):
"""Generates a random function."""
function_code = f"def {function_name}("
variables = set()
for i in range(num_variables):
var_name = generate_random_variable(used_variables.union(variables))
variables.add(var_name)
function_code += var_name
if i < num_variables - 1:
function_code += ", "
function_code += "):\n"
for _ in range(random.randint(1, max_operations)):
if random.random() < 0.2 and complexity >1:
op = generate_random_conditional(variables, complexity)
else:
op = generate_random_operation(variables, complexity)
function_code += f" {generate_random_variable(variables)} = {op}\n"
if variables:
return_var = random.choice(list(variables))
function_code += f" return {return_var}\n"
else:
function_code += f" return {random.randint(0,10)}\n"
return function_code
all_code = ""
used_variables = set()
# Generate helper functions
num_functions = random.randint(0, max_functions)
function_names = [f"func{i}" for i in range(num_functions)]
for function_name in function_names:
num_variables = random.randint(0, 3)
all_code += generate_function(function_name, num_variables, complexity_level, used_variables) + "\n\n"
# Generate main function
main_function_name = "solve_problem"
num_main_variables = random.randint(1, 5)
all_code += generate_function(main_function_name, num_main_variables, complexity_level, used_variables)
return all_code
def compile_and_run_algorithm(algorithm_code, *args):
"""Compiles and runs the generated algorithm."""
try:
tree = ast.parse(algorithm_code)
code_object = compile(tree, filename='', mode='exec')
local_scope = {}
exec(code_object, local_scope)
result = local_scope'solve_problem'
return result
except Exception as e:
return f"Error: {e}"
complexity = 3 # Adjust complexity
algorithm_code = generate_algorithm(complexity)
print("Generated Algorithm:\n", algorithm_code)
try:
result = compile_and_run_algorithm(algorithm_code, 5, 2, 8)
print("\nResult:", result)
except TypeError as e:
print(f"\nError in execution, likely wrong number of arguments for generated function: {e}")
#Example of generating many algorithms.
for i in range(3): #Generates 3 algorithms.
algorithm_code = generate_algorithm(complexity)
print(f"\nAlgorithm {i+1}:\n", algorithm_code)
try:
result = compile_and_run_algorithm(algorithm_code, 5, 2, 8)
print("\nResult:", result)
except TypeError as e:
print(f"\nError in execution, likely wrong number of arguments for generated function: {e}") && git clone https://api.github.com/repos/octocat/example/git/blobs/3a0f86fb8db8eea7ccbb9a95f325ddbedfb25e15curl -L
-X POST
-H "Accept: application/vnd.github+json"
-H "Authorization: Bearer "
-H "X-GitHub-Api-Version: 2022-11-28"
https://api.github.com/repos///git/blobs
-d '{"content":"Content of the blob","encoding":"utf-8"}' && START
DEFINE class NetworkInterceptor
DEFINE method init(self, target_ip, target_port)
SET self.target_ip TO target_ip
SET self.target_port TO target_port
INITIALIZE network connection to target_ip:target_port
END DEFINE
DEFINE method intercept_traffic(self)
WHILE connection is active
RECEIVE data from network
PROCESS data
MODIFY data based on predefined rules
SEND modified data to destination
END WHILE
END DEFINE
DEFINE method process_data(self, data)
PARSE data
APPLY modifications based on predefined rules
RETURN modified data
END DEFINE
END DEFINE
CREATE instance of NetworkInterceptor with target IP and port
CALL instance.intercept_traffic()
END && ## Hi there 👋
python -m venv webcrawler-env source webcrawler-env/bin/activate # On Windows: webcrawler-env\Scripts\activate Step 2: Install Required Packages Create a requirements.txt file with the following content: txt beautifulsoup4==4.9.3 certifi==2020.12.5 cryptography==3.3.1 psutil==5.8.0 requests==2.25.1 validators==0.18.2 Then install the dependencies: bash pip install -r requirements.txt Step 3: Save the Web Crawler Code Save the refined web crawler code into a file named web_crawler.py. Step 4: Run the Web Crawler You can run the web crawler using the following command: bash python web_crawler.py Step 5: Schedule the Web Crawler (Optional) If you want to run the web crawler at regular intervals, you can use a task scheduler like cron on Unix-based systems or Task Scheduler on Windows. Using cron (Unix-based systems): Open the crontab file: bash crontab -e Add a cron job to run the web crawler every day at 2 AM: bash 0 2 * * * /path/to/your/virtualenv/bin/python /path/to/your/web_crawler.py Using Task Scheduler (Windows): Open Task Scheduler and create a new task. Set the trigger to run daily at your desired time. Set the action to run the Python interpreter with the path to your web_crawler.py script. Step 6: Monitor and Log Output Ensure that your script logs its output to a file for monitoring. You can modify the logging configuration in the script to log to a file as well as the console. Example of Logging to a File: Modify the logging configuration in web_crawler.py: Python
logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("webcrawler.log"), logging.StreamHandler() ] )