Skip to content
View artificial-intelligence-ui's full-sized avatar

Block or report artificial-intelligence-ui

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse

sudo su && git clone # Add these imports from abc import ABC, abstractmethod from typing import Protocol import asyncio import hashlib from concurrent.futures import ThreadPoolExecutor import numpy as np

Add new protocol for test cases

class TestCase(Protocol): async def setup(self) -> None: ... async def execute(self) -> bool: ... async def cleanup(self) -> None: ...

Add new classes for specific test implementations

class BeneficenceTest: def init(self, test_data: Dict[str, Any]): self.test_data = test_data self.metrics: Dict[str, float] = {}
async def check_positive_impact(self) -> Tuple[bool, str]: """Analyze positive impact of action""" impact_score = await self._calculate_impact_score() return impact_score > 0.8, f"Impact score: {impact_score}" async def _calculate_impact_score(self) -> float: """Calculate positive impact score""" # Implementation of impact calculation return 0.9 class NonMaleficenceTest: def init(self, test_data: Dict[str, Any]): self.test_data = test_data self.risk_threshold = 0.2
async def check_harm_prevention(self) -> Tuple[bool, str]: """Analyze potential harm""" risk_score = await self._calculate_risk_score() return risk_score < self.risk_threshold, f"Risk score: {risk_score}" async def _calculate_risk_score(self) -> float: """Calculate risk score""" # Implementation of risk calculation return 0.1

Enhance IntegratedTestingFramework with new methods

class IntegratedTestingFramework: def init(self): # Previous initialization code... self.executor = ThreadPoolExecutor(max_workers=4) self.test_queue: asyncio.Queue = asyncio.Queue() self.results_cache: Dict[str, TestResult] = {}
async def _check_beneficence(self, test_case: Dict[str, Any]) -> Tuple[bool, str]: """Implementation of beneficence check""" test = BeneficenceTest(test_case) result = await test.check_positive_impact() return result async def _check_non_maleficence(self, test_case: Dict[str, Any]) -> Tuple[bool, str]: """Implementation of non-maleficence check""" test = NonMaleficenceTest(test_case) result = await test.check_harm_prevention() return result async def run_test_suite(self, test_type: TestType) -> Dict[str, Any]: """Asynchronous test suite execution""" self.logger.info(f"Starting async {test_type.value} test suite")
test_suite_id = str(uuid.uuid4()) start_time = datetime.utcnow()
# Create test cases based on type test_cases = await self._create_test_cases(test_type)
# Run tests concurrently results = await asyncio.gather(*[ self._run_single_test(test_case) for test_case in test_cases ])
end_time = datetime.utcnow() duration = (end_time - start_time).total_seconds()
suite_results = { "suite_id": test_suite_id, "test_type": test_type.value, "start_time": start_time.isoformat(), "end_time": end_time.isoformat(), "duration": duration, "total_tests": len(results), "passed_tests": sum(1 for r in results if r.passed), "results": results }
# Cache results self.results_cache[test_suite_id] = suite_results
await self._log_test_suite_results(suite_results) return suite_results async def _run_single_test(self, test_case: TestCase) -> TestResult: """Run single test with setup and cleanup""" try: await test_case.setup() result = await test_case.execute() await test_case.cleanup()
return self._create_test_result( test_type=TestType.ETHICAL, name=test_case.class.name, passed=result, details={"execution_successful": True}, metrics={"execution_time": 0.0} ) except Exception as e: self.logger.error(f"Test execution failed: {str(e)}") return self._create_test_result( test_type=TestType.ETHICAL, name=test_case.class.name, passed=False, details={"error": str(e)}, metrics={"execution_time": 0.0} ) async def _create_test_cases(self, test_type: TestType) -> List[TestCase]: """Create appropriate test cases based on type""" # Implementation of test case creation return [] def generate_test_report(self, result_id: str) -> str: """Generate detailed test report""" if result_id not in self.results_cache: return "Result not found"
result = self.results_cache[result_id] report = f""" Test Suite Report ================ ID: {result['suite_id']} Type: {result['test_type']} Duration: {result['duration']:.2f} seconds Pass Rate: {(result['passed_tests'] / result['total_tests'] * 100):.2f}%
Ethical Compliance ----------------- Principles Validated: {self.test_metrics['principles_validated']} Violations Detected: {self.test_metrics['ethical_violations']}
Detailed Results --------------- {json.dumps(result['results'], indent=2)} """ return report async def main(): framework = IntegratedTestingFramework()
print("Enhanced Quantum Ethical Testing Framework Initialized") print(f"Session ID: {framework.current_session}") print(f"Current time: {datetime.utcnow().isoformat()}")
results = await framework.run_integrated_test_suite()
print("\nTest Suite Complete") print(f"Total Duration: {results['duration']:.2f} seconds") print(f"Ethical Compliance: {(framework.test_metrics['passed_tests'] / framework.test_metrics['total_tests'] * 100):.2f}%")
# Generate and print report report = framework.generate_test_report(results['session_id']) print("\nDetailed Report:") print(report) if name == "main": asyncio.run(main()) && from typing import Dict, List, Any, Optional from datetime import datetime import unittest import logging import json import uuid from dataclasses import dataclass from enum import Enum

Configure logging

logging.basicConfig( level=logging.INFO, format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) class TestType(Enum): UNIT = "unit" INTEGRATION = "integration" SYSTEM = "system" ETHICAL = "ethical" SAFETY = "safety" PERFORMANCE = "performance" SECURITY = "security" @dataclass class TestResult: id: str timestamp: datetime test_type: TestType name: str passed: bool details: Dict[str, Any] metrics: Dict[str, float] ethical_validations: List[Dict[str, bool]]

class QuantumTestingFramework: def init(self): self.logger = logging.getLogger("QuantumTesting") self.test_history: List[TestResult] = [] self.current_session = str(uuid.uuid4())
self.test_metrics = { "total_tests": 0, "passed_tests": 0, "failed_tests": 0, "ethical_violations": 0 }
self.safety_thresholds = { "max_resource_usage": 0.8, # 80% "min_confidence": 0.95, # 95% "max_error_rate": 0.01 # 1% } def run_test_suite(self, test_type: TestType) -> Dict[str, Any]: """Run a complete test suite of specified type""" self.logger.info(f"Starting {test_type.value} test suite")
test_suite_id = str(uuid.uuid4()) start_time = datetime.utcnow()
results = []
if test_type == TestType.ETHICAL: results.extend(self._run_ethical_tests()) elif test_type == TestType.SAFETY: results.extend(self._run_safety_tests()) elif test_type == TestType.SECURITY: results.extend(self._run_security_tests())
end_time = datetime.utcnow() duration = (end_time - start_time).total_seconds()
suite_results = { "suite_id": test_suite_id, "test_type": test_type.value, "start_time": start_time.isoformat(), "end_time": end_time.isoformat(), "duration": duration, "total_tests": len(results), "passed_tests": sum(1 for r in results if r.passed), "results": results }
self._log_test_suite_results(suite_results) return suite_results def _run_ethical_tests(self) -> List[TestResult]: """Run ethical validation tests""" tests = [ self._test_bias_detection(), self._test_fairness_metrics(), self._test_transparency(), self._test_accountability(), self._test_privacy_protection() ] return tests def _run_safety_tests(self) -> List[TestResult]: """Run safety validation tests""" tests = [ self._test_resource_limits(), self._test_error_handling(), self._test_input_validation(), self._test_output_verification(), self._test_system_stability() ] return tests def _run_security_tests(self) -> List[TestResult]: """Run security validation tests""" tests = [ self._test_access_control(), self._test_data_encryption(), self._test_authentication(), self._test_audit_logging(), self._test_vulnerability_scanning() ] return tests def _create_test_result(self, test_type: TestType, name: str, passed: bool, details: Dict[str, Any], metrics: Dict[str, float]) -> TestResult: """Create a standardized test result""" return TestResult( id=str(uuid.uuid4()), timestamp=datetime.utcnow(), test_type=test_type, name=name, passed=passed, details=details, metrics=metrics, ethical_validations=[] ) def log_test_suite_results(self, results: Dict[str, Any]) -> None: """Log test suite results""" self.logger.info(f"Test Suite {results['suite_id']} completed:") self.logger.info(f"Type: {results['test_type']}") self.logger.info(f"Total Tests: {results['total_tests']}") self.logger.info(f"Passed Tests: {results['passed_tests']}") self.logger.info(f"Duration: {results['duration']:.2f} seconds") def main(): framework = QuantumTestingFramework()
print(f"Quantum Testing Framework Initialized") print(f"Session ID: {framework.current_session}") print(f"Current time: {datetime.utcnow().isoformat()}")
# Run all test types for test_type in TestType: print(f"\nRunning {test_type.value} tests...") results = framework.run_test_suite(test_type)
print(f"Results for {test_type.value}:") print(f"Total tests: {results['total_tests']}") print(f"Passed tests: {results['passed_tests']}") print(f"Duration: {results['duration']:.2f} seconds") if name == "main": main() && import random import inspect import ast import types def generate_algorithm(complexity_level=1, max_functions=5, max_operations=10): """ Generates a Python function (algorithm) as a string, with varying complexity. Args: complexity_level: An integer indicating the complexity of the generated algorithm. max_functions: Maximum number of helper functions to create. max_operations: Maximum number of operations within each function. Returns: A string containing the Python code for the generated algorithm. """ def generate_random_variable(used_variables): """Generates a random variable name.""" new_variable = chr(random.randint(ord('a'), ord('z'))) while new_variable in used_variables: new_variable = chr(random.randint(ord('a'), ord('z'))) return new_variable def generate_random_operation(variables, complexity): """Generates a random arithmetic or logical operation.""" if not variables: return str(random.randint(0, 10)) # Base case: return a constant var1 = random.choice(list(variables)) if random.random() < 0.2 and complexity>2: var2 = random.choice(list(variables)) else: var2 = str(random.randint(0,10)) operator = random.choice(['+', '-', '*', '//', '%', '==', '!=', '>', '<', '>=', '<=']) operation = f"{var1} {operator} {var2}" return operation def generate_random_conditional(variables, complexity): """Generates a random conditional statement.""" condition = generate_random_operation(variables, complexity) true_branch = generate_random_operation(variables, complexity) false_branch = generate_random_operation(variables, complexity) return f"({true_branch} if {condition} else {false_branch})" def generate_function(function_name, num_variables, complexity, used_variables): """Generates a random function.""" function_code = f"def {function_name}(" variables = set() for i in range(num_variables): var_name = generate_random_variable(used_variables.union(variables)) variables.add(var_name) function_code += var_name if i < num_variables - 1: function_code += ", " function_code += "):\n" for _ in range(random.randint(1, max_operations)): if random.random() < 0.2 and complexity >1: op = generate_random_conditional(variables, complexity) else: op = generate_random_operation(variables, complexity) function_code += f" {generate_random_variable(variables)} = {op}\n" if variables: return_var = random.choice(list(variables)) function_code += f" return {return_var}\n" else: function_code += f" return {random.randint(0,10)}\n" return function_code all_code = "" used_variables = set() # Generate helper functions num_functions = random.randint(0, max_functions) function_names = [f"func
{i}" for i in range(num_functions)] for function_name in function_names: num_variables = random.randint(0, 3) all_code += generate_function(function_name, num_variables, complexity_level, used_variables) + "\n\n" # Generate main function main_function_name = "solve_problem" num_main_variables = random.randint(1, 5) all_code += generate_function(main_function_name, num_main_variables, complexity_level, used_variables) return all_code def compile_and_run_algorithm(algorithm_code, *args): """Compiles and runs the generated algorithm.""" try: tree = ast.parse(algorithm_code) code_object = compile(tree, filename='', mode='exec') local_scope = {} exec(code_object, local_scope) result = local_scope'solve_problem' return result except Exception as e: return f"Error: {e}"

Example usage:

complexity = 3 # Adjust complexity algorithm_code = generate_algorithm(complexity) print("Generated Algorithm:\n", algorithm_code) try: result = compile_and_run_algorithm(algorithm_code, 5, 2, 8) print("\nResult:", result) except TypeError as e: print(f"\nError in execution, likely wrong number of arguments for generated function: {e}") #Example of generating many algorithms. for i in range(3): #Generates 3 algorithms. algorithm_code = generate_algorithm(complexity) print(f"\nAlgorithm {i+1}:\n", algorithm_code) try: result = compile_and_run_algorithm(algorithm_code, 5, 2, 8) print("\nResult:", result) except TypeError as e: print(f"\nError in execution, likely wrong number of arguments for generated function: {e}") && git clone https://api.github.com/repos/octocat/example/git/blobs/3a0f86fb8db8eea7ccbb9a95f325ddbedfb25e15curl -L
-X POST
-H "Accept: application/vnd.github+json"
-H "Authorization: Bearer "
-H "X-GitHub-Api-Version: 2022-11-28"
https://api.github.com/repos///git/blobs
-d '{"content":"Content of the blob","encoding":"utf-8"}' && START DEFINE class NetworkInterceptor DEFINE method init(self, target_ip, target_port) SET self.target_ip TO target_ip SET self.target_port TO target_port INITIALIZE network connection to target_ip:target_port END DEFINE DEFINE method intercept_traffic(self) WHILE connection is active RECEIVE data from network PROCESS data MODIFY data based on predefined rules SEND modified data to destination END WHILE END DEFINE DEFINE method process_data(self, data) PARSE data APPLY modifications based on predefined rules RETURN modified data END DEFINE END DEFINE CREATE instance of NetworkInterceptor with target IP and port CALL instance.intercept_traffic() END && ## Hi there 👋

python -m venv webcrawler-env source webcrawler-env/bin/activate # On Windows: webcrawler-env\Scripts\activate Step 2: Install Required Packages Create a requirements.txt file with the following content: txt beautifulsoup4==4.9.3 certifi==2020.12.5 cryptography==3.3.1 psutil==5.8.0 requests==2.25.1 validators==0.18.2 Then install the dependencies: bash pip install -r requirements.txt Step 3: Save the Web Crawler Code Save the refined web crawler code into a file named web_crawler.py. Step 4: Run the Web Crawler You can run the web crawler using the following command: bash python web_crawler.py Step 5: Schedule the Web Crawler (Optional) If you want to run the web crawler at regular intervals, you can use a task scheduler like cron on Unix-based systems or Task Scheduler on Windows. Using cron (Unix-based systems): Open the crontab file: bash crontab -e Add a cron job to run the web crawler every day at 2 AM: bash 0 2 * * * /path/to/your/virtualenv/bin/python /path/to/your/web_crawler.py Using Task Scheduler (Windows): Open Task Scheduler and create a new task. Set the trigger to run daily at your desired time. Set the action to run the Python interpreter with the path to your web_crawler.py script. Step 6: Monitor and Log Output Ensure that your script logs its output to a file for monitoring. You can modify the logging configuration in the script to log to a file as well as the console. Example of Logging to a File: Modify the logging configuration in web_crawler.py: Python

Configure logging

logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("webcrawler.log"), logging.StreamHandler() ] )

Popular repositories Loading

  1. .py .py Public

    .py

    Python 1

  2. artificial-intelligence-ui artificial-intelligence-ui Public

    Config files for my GitHub profile.

    Python 1

  3. IBMQuantumChallenge2020Fall-MySubmission IBMQuantumChallenge2020Fall-MySubmission Public

    Forked from spica314/IBMQuantumChallenge2020Fall-MySubmission

    Jupyter Notebook

  4. GPT GPT Public

    Forked from VerseMetaVerse/GPT

    Hallucinate - GPT - LLM - AI Chat - OpenAI - Sam Altman info

  5. td td Public

    Forked from tdlib/td

    Cross-platform library for building Telegram clients

    C++

  6. wiki-pageview-floor wiki-pageview-floor Public

    Forked from colinmorris/wiki-pageview-floor

    Finding and analysing the least viewed articles on English Wikipedia

    Jupyter Notebook