Skip to content

LostOxygen/non_robust_data_poisoning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

f4e18b5 · Nov 2, 2021

History

2 Commits
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021
Nov 2, 2021

Repository files navigation

Data Poisoning based on Adversarial Attacks using Non-Robust Features

Usage

python main.py [-h] [--gpu | -g GPU]  [--eps |-e EPSILON] [--pert | -p PERTURBATION_PERCENTAGE] [--loss_fn | -l LOSS_FUNCTION] [--layer_cuts | -c LAYER_CUTS] [--target_class | -t TARGET_CLASS] [--new_class | -n NEW_CLASS] [-v | --eva] [--dataset | -d DATASET] [--resnet | -m] [--transfer | -f] [--rand | -a] [--iters | -s ITERATIONS]

Arguments

Argument Type Description
-h, --help None shows argument help message
-g, --gpu INT specifies which GPU should be used [0, 1]
-e, --eps INT specifies the epsilon value which is used to perturb the images
-p, --pert FLOAT specifies how much of the dataset (in %) gets perturbed
-l, --loss_fn INT specifies the loss function: [0] BCE, [1] Wasserstein, [2] KL-Div, [3] MinMax
-c, --layer_cuts INT specifies the dense layer(s) (counting from last to first) from which the activations are obtained
-t, --target_class INT specifies the target class (from which the 'best' image will be used for misclassification)
-n, --new_class INT specifies the class as which the chosen image gets misclassified
-i, --image_id INT specifies the ID of a certain image which will be misclassified instead of the 'best' target class image
-v, --eval BOOL skips the training phase and only runs the evaluation. Needs --image_id to be set
-d, --dataset INT specifies the used dataset: [0] Cifar10, [1] Cifar100, [2] TinyImageNet
-m, --is_resnet BOOL set flag if the resnet model should be used
-f, --transfer BOOL set flag if transfer learning should be used (Freeze the feature extraction and only train the classifier on the new dataset)
-a, --rand BOOL set flag if a random target image instead of the most suitable one should be used
-s, --iters INT duplicates the given target and new class to test more iterations of complete attacks on them. Makes passing a list of same classes obsolete
-b, --best BOOL set flag if the successful attack parameters for a given class combination should be loaded
-u, --untargeted BOOL set flag to perform an untargeted attack on the target class
-cl, --cluster INT specifies the number of clusters in which the training data is divided for the untargeted attack

Examples

python main.py --gpu 0 --eps 2 1 0.75 0.5 0.25 0.1 --pert 0.5 --loss_fn 2 --layer_cuts 1 2 --dataset 0 --target_class "deer" --new_class "horse"

Would use deer as the target class and horse as the new class to create 12 datasets. Six datasets with ​epsilon = [2, 1, 0.75, 0.5, 0.25, 0.1] and the activations from the last dense layer and six datasets with the same epsilon values but the activations from the penultimate dense layer. Both datasets contain 50% perturbed images and the generation as well as the training is performed on GPU:0. The model used is the standard CNN while the dataset is a unmodified CIFAR10 dataset.

python main.py --gpu 1 --dataset 1 --target_class "bee" --new_class "beetle" --resnet --transfer --rand --iters 10 --best

Would load the attack parameters from results/attack_results.pkl for the chosen class combination and would choose 10 times a random target image to test these parameters on.

Untargeted Attack Test-Calls

python3 main.py --gpu 0 --dataset 0 --eps 0.5 --pert 1.0 --loss_fn 2 --resnet --transfer --untargeted --rand --cluster 1 --iters 10

Download TinyImageNet

wget -nc http://cs231n.stanford.edu/tiny-imagenet-200.zip

About

Data poisoning attack based on non-robust features

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages