-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.go
243 lines (178 loc) · 4.78 KB
/
eval.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
package main
import (
"fmt"
"strings"
)
type Evaluator interface {
Eval(tokenizer Tokenizer, maxRank int) ([]float64, error)
}
type EvalRunner struct {
tokenizers []Tokenizer
evaluators []Evaluator
tokenizerNames []string
evaluatorNames []string
}
func NewRunner() *EvalRunner {
return &EvalRunner{
tokenizers: make([]Tokenizer, 0),
evaluators: make([]Evaluator, 0),
tokenizerNames: make([]string, 0),
evaluatorNames: make([]string, 0),
}
}
func (r *EvalRunner) AddTokenizer(tokenizer Tokenizer, name string) {
r.tokenizers = append(r.tokenizers, tokenizer)
r.tokenizerNames = append(r.tokenizerNames, name)
}
func (r *EvalRunner) AddEvaluator(evaluator Evaluator, name string) {
r.evaluators = append(r.evaluators, evaluator)
r.evaluatorNames = append(r.evaluatorNames, name)
}
func (r *EvalRunner) RunAll(vocabSizes ...int) (string, [][][]float64) {
if len(vocabSizes) == 0 {
vocabSizes = []int{-1}
}
results := make([][]string, 0, len(r.tokenizers)*len(vocabSizes)+1)
columns := make([]string, len(r.evaluators)+2)
widths := make([]int, len(r.evaluators)+2)
results = append(results, append([]string{"#", "Vocabulary"}, r.evaluatorNames...))
raw := make([][][]float64, len(r.evaluators))
for i, name := range results[0] {
columns[i] = name
widths[i] = len(name)
}
for _, vocabSize := range vocabSizes {
for i, tokenizer := range r.tokenizers {
model, ok := tokenizer.model.(*MBPE)
if !ok {
panic("unexpected model type")
}
row := make([]string, len(columns))
row[0] = r.tokenizerNames[i]
if vocabSize == -1 {
row[1] = fmt.Sprintf("%d", len(model.vocab))
} else {
row[1] = fmt.Sprintf("%d", vocabSize)
}
maxRank := -1
if vocabSize > -1 {
alphabet := model.Alphabet()
if vocabSize < len(alphabet) {
panic("vocab size smaller than alphabet")
}
if vocabSize > len(model.vocab) {
panic("vocab size larger than model vocabulary")
}
maxRank = vocabSize - len(alphabet)
}
for j, evaluator := range r.evaluators {
result, err := evaluator.Eval(tokenizer, maxRank)
if err != nil {
row[j+2] = "error"
continue
}
s := make([]string, len(result))
for k, v := range result {
s[k] = fmt.Sprintf("%.2f", v)
}
row[j+2] = strings.Join(s, ", ")
raw[j] = append(raw[j], result)
}
for j, cell := range row {
if len(cell) > widths[j] {
widths[j] = len(cell)
}
}
results = append(results, row)
}
}
return markdownTable(results, widths), raw
}
func markdownTable(table [][]string, widths []int) string {
var sb strings.Builder
divider := make([]string, len(widths))
for i, width := range widths {
divider[i] = strings.Repeat("-", width+2)
}
for i, row := range table {
cells := make([]string, len(row))
for j, cell := range row {
cells[j] = fmt.Sprintf("%-*s", widths[j], cell)
}
sb.WriteString(fmt.Sprintf("| %s |\n", strings.Join(cells, " | ")))
if i == 0 {
sb.WriteString(fmt.Sprintf("|%s|\n", strings.Join(divider, "|")))
}
}
return sb.String()
}
func getTokenizerSegmentation(tokenizer Tokenizer, text string, maxRank int) ([]string, bool) {
var model *MBPE
if mbpe, ok := tokenizer.model.(*MBPE); !ok {
panic("unexpected model")
} else {
model = mbpe
}
result := make([]string, 0)
for _, chunk := range tokenizer.preTokenizer.PreTokenize(text) {
var ids []int
func() {
defer func() {
if r := recover(); r != nil {
ids = nil
}
}()
ids = model.tokenize(chunk, nil, maxRank)
}()
if ids == nil {
return nil, false
}
var segmentation = make([]string, len(ids))
for i, token := range model.ToString(ids) {
segmentation[i] = tokenizer.decoder.Decode([]string{token})
}
result = append(result, segmentation...)
}
return result, true
}
func getTokenizerSegmentationLayered(tokenizer Tokenizer, text string, maxRank int) ([][]string, bool) {
var model *MBPE
if mbpe, ok := tokenizer.model.(*MBPE); !ok {
panic("unexpected model")
} else {
model = mbpe
}
var chunk string
if chunks := tokenizer.preTokenizer.PreTokenize(text); len(chunks) > 1 {
return nil, false
} else {
chunk = chunks[0]
}
var layers [][]int
func() {
defer func() {
if r := recover(); r != nil {
layers = nil
}
}()
layers = model.TokenizeLayered(chunk, maxRank)
}()
if layers == nil {
return nil, false
}
segmentations := make([][]string, len(layers))
for i, layer := range layers {
segmentations[i] = make([]string, len(layer))
for j, token := range model.ToString(layer) {
segmentations[i][j] = tokenizer.decoder.Decode([]string{token})
}
}
return segmentations, true
}
func selectColumn(series [][]float64, j int) []float64 {
result := make([]float64, len(series))
for i, row := range series {
result[i] = row[j]
}
return result
}